«Игровые педагогические технологии интенсивного развития интеллектуальных способностей детей дошкольного возраста» |
Педагогика | |||
Автор: Зарубина Татьяна Георгиевна | |||
27.09.2019 15:00 | |||
«Игровые педагогические технологии интенсивного развития интеллектуальных способностей детей дошкольного возраста» Интеллект — сложное интегральное образование, включающее разные познавательныепроцессы и функции (мышление, память, внимание, воображение, речь) в их взаимосвязи. П. Я. Гальперин Дошкольное детство – первый период психического развития ребенка, и поэтому наиболее ответственный. На данном этапе закладываются основы всех психических процессов и личностных качеств ребенка. В связи с этим столь важно развитиепсихических процессов именно в дошкольном возрасте для дальнейшего успешного школьного обучения детей и самореализации их во взрослой жизни. Это период рождения личности, первоначального раскрытия творческих сил ребенка, становления основ его индивидуальности.
Развитие интеллектуальных способностей детей дошкольного возраста – одна из актуальных проблем современности. Дошкольники с развитым интеллектом быстрее запоминают материал, более уверенны в своих силах, легче адаптируются в новой обстановке, лучше подготовлены к школе. Педагоги и психологи утверждают, что интеллектуальное развитие человека на половину завершается уже к четырем годам, а к восьми – еще на треть. Доказано, что интенсивное развитие интеллекта в дошкольном возрасте повышает процент обучаемости детей в школе. Ведь важно не только, какими знаниями владеет ребенок к поступлению в образовательное учреждение, а готов ли он к их получению, умению рассуждать, делать выводы, системно мыслить, понимать происходящие закономерности. Основа интеллекта человека, его сенсорный опыт закладывается в первые годы жизни ребёнка. Обучение лучше осуществлять в естественном, самом привлекательном виде деятельности- игре. В процессе игры развиваются функции планирования, умение анализировать результаты, воображение и др. Основная особенность развивающих игр определена их названием. Обучающая задача, поставленная в игровой форме, замечательна тем, что в ситуации игры ребёнку понятна сама необходимость приобретения новых знаний и способов действий. Ребёнок, увлечённый привлекательным замыслом новой игры, как бы не замечает того, что он учится, хотя при этом он то и дело сталкивается с затруднениями, требующими перестройки его представлений и познавательной деятельности. Использование развивающих игр в педагогическом процессе позволяет преобразовать образовательную деятельность: перейти от обычных занятий к игровой деятельности, организованной взрослыми или самостоятельно. Развивающие игры создают своеобразный микроклимат для развития математических представлений дошкольника. Дети учатся анализу, сопоставлению, сравнению связанных между собой понятий и действий, выяснению сходства и различия в рассматриваемых фактах, развитию умения делать простейшие выводы и обобщения. У ребёнка формируются умения последовательно излагать свои мысли, включаться в разнообразную совместную познавательную деятельность, использовать математические знания для решения конкретных жизненных проблем, взаимодействовать со взрослыми и другими детьми в ходе выполнения заданий, внимательно слушать, объяснять свои действия при выполнении математических упражнений. Сегодня я хочу представить вашему вниманию развивающие игры математического содержания педагогов – новаторов Б. П. Никитина, Дж. Кюизинера и З. Дьенеша, В.В Воскобовича. Опыт их работы был представлен в середине XX века. На сегодняшний день их работы не потеряли актуальности и положительно влияют на саморазвитие ребёнка, его самостоятельность, самоорганизацию, самовыражение, самоконтроль. В процессе моделирования ребёнок замещает конструкцией из палочек и кубиков реальный предмет с помощью творческого воображения. Работа с детьми строится на следующих принципах:
ПЕДАГОГИЧЕСКАЯ ТЕХНОЛОГИЯ “ПАЛОЧКИ КЮИЗЕНЕРА” Джордж Кюизенер — бельгийский педагог- математик, разработал уникальную методику обучения детей математике с помощью цветных палочек, их ещё называют цветные числа Цветные палочки представляют собой 10 различных по цвету и величине параллелепипедов, выполненных из дерева или пластика. Существуют разные варианты и модификации наборов палочек. Они могут отличаться цветовой гаммой, но в каждом из наборов существует одно и то же правило: палочки одинаковой длины окрашены в один и тот же цвет и обозначают одно и то же число. Близкие по цветам палочки объединяются в семейства или классы. Например, красная палочка обозначает число 4, бордовая 8, розовая 2 — все эти палочки можно отнести к семейству чисел кратных 2; семейство синих палочек кратно 3, жёлтых — 5, чёрных — 7. Белая палочка имеет форму куба со стороной 1см. Она укладывается по длине каждой палочки целое число раз и является условной меркой для определения состава числа из единиц. Выполняя задания с палочками, дети осваивают:
Работать с комплектом палочек можно как в вертикальной, так и в горизонтальной плоскости, в зависимости от поставленных задач. Цветные палочки Кюизенера изначально были рекомендованы как средство для формирования элементарных математических представлений у детей дошкольного возраста, но в процессе работы с палочками выявился более широкий диапазон их применения в различных видах деятельности. Сенсорное развитие. В процессе работы с цветными палочками у детей развивается способность сравнивать предметы по цвету, форме, величине; определять их место положения в пространстве, развивается глазомер, уточняются и закрепляются знания об основных цветах и их оттенках. Примерные задания: - Назови, какого цвета самая длинная (короткая) палочка. -Какой формы белая (голубая, оранжевая) палочка. -Выложи все красные палочки слева от себя, а голубые — справа. - Какого цвета палочки длиннее (короче) фиолетовой. - Выложи все палочки в ряд в порядке убывания. Какого цвета палочка стоит между… Развитие познавательно-исследовательской и конструктивной деятельности. При конструировании из палочек у детей развивается умение устанавливать связь между создаваемыми конструкциями и реальными объектами окружающего мира. Моделирование из палочек по замыслу даёт детям возможность путём проб, сравнений, обследовательских действий самостоятельно подбирать нужный материал. Дети учатся выдвигать предположения и самостоятельно их проверять, осуществляя практические и мыслительные действия. Примерные задания: -Выложи из любых палочек мебель для куколки. -Выложи разные машины, самостоятельно подбирая палочки. -Выложи коврик для собачки из любых палочек. -Выложи из палочек любых животных. Формирование элементарных математических представлений. Использование цветных палочек Кюизенера позволяет развивать у дошкольников представления о числе на основе счёта и измерения; формировать осознание соотношений «больше — меньше», «больше — меньше на…»; формировать умение делить целое на части; находить состав числа из единиц и двух меньших чисел; упражнять в порядковом и количественном счёте; измерять объект условной меркой. Развивается умение различать и называть геометрические фигуры; происходит ознакомление с пространственными отношениями (слева, справа, вверху, внизу и т. д.) Примерные задания: -Белая палочка обозначает число 1. Положите под розовой палочкой столько белых, чтобы их края уравнялись. Сколько белых палочек уместилось под розовой, такое число и будет обозначать розовая палочка. Самостоятельно определите числовое значение жёлтой палочки (голубой, красной и т. д.). -Разложите карточки с цифрами по порядку. Положите к каждой цифре палочку соответствующую данному числовому значению. -Я назову число, а вы покажите соответствующую палочку (и наоборот). -Разложите палочки в порядке убывания (от самой длинной к самой короткой). -Сосчитайте сколько всего палочек. Назовите, которая по счёту красная палочка (синяя, оранжевая и т. д.). -Выложите из палочек треугольник, ромб, квадрат, многоугольник и т. д. -Разложите палочки на листе так: в левый верхний угол положите синюю палочку, в верхний правый угол — красную, в левый нижний угол — розовую, в правый нижний — фиолетовую. Белую палочку положите на середину листа. Предметный мир. Используя палочки Кюизенера как мозаику или конструктор, дети могут создавать конструкции различных предметов, а также предметов по лексическим темам, чтоспособствует усвоению видовых и родовых представлений. Развитие речи. Палочки Кюизенера позволяют упражнять детей: В использовании сравнительных прилагательных: длинный, длиннее, самый длинный; короткий, короче, самый короткий. В построении предложно-падежных конструкций. В употреблении порядковых и количественных числительных. В запоминании и назывании основных цветов и их оттенков. На приведённых примерах мы убеждаемся, что дидактическое пособие «Цветные палочки» Кюизенера универсально и может использоваться в различных видах деятельности. Оно соответствует современным требованиям дидактики и позволяет успешно решать программные задачи. ПЕДАГОГИЧЕСКАЯ ТЕХНОЛОГИЯ “БЛОКИ ДЬЕНЕША” Каждый родитель хочет, чтобы его ребенок был всесторонне развит. Каждый ребенок хочет одного – играть. Десятки развивающих методик совмещают обучение и игру. Через игру действует и система Дьенеша. З. Дьенеш считал, что только задействуя творческий потенциал ребенка, можно привить любовь к математике и добиться реальных успехов в изучении этой науки. Золтан Дьенеш предлагает использовать для игр «логические блоки» (иногда их называют кубиками Дьенеша). Логические блоки Дьенеша — это набор из 48 геометрических фигур, причем в наборе нет ни одной одинаковой, все они различаются свойствами: формой (круглые, квадратные, треугольные, прямоугольные, цветом (красные, желтые, синие, размером (большие и маленькие) и толщиной (толстые и тонкие). Работа с логическими блоками Дьенеша знакомит детей с геометрическими фигурами, формой и размером предметов, развивает мыслительные умения (сравнивать, анализировать, классифицировать, обобщать, познавательные процессы, творческие способности. Этот универсальный дидактический материал успешно используется во всех возрастных группах. Основная цель использования дидактического материала: научить дошкольников решать логические задачи на разбиение по свойствам. Основное умение, необходимое для решения логических задач — это умение выявлять в объектах разнообразные свойства, называть их, адекватно обозначать словом их отсутствие, удерживать их в памяти. У игр и упражнений есть три варианта сложности.
Наряду с логическими блоками в работе применяются карточки (5x5 см., на которых условно обозначены свойства блоков (цвет, форма, размер, толщина). Использование карточек позволяет развивать у детей способность к замещению и моделированию свойств, умение кодировать и декодировать информацию о них. Эти способности и умения развиваются в процессе выполнения разнообразных предметно-игровых действий. Так, подбирая карточки, которые "рассказывают" о цвете, форме, величине или толщине блоков, дети упражняются в замещении и кодировании свойств. Карточки-свойства помогают детям перейти от наглядно-образного к наглядно-схематическому мышлению, а карточки с отрицанием свойств становятся мостиком к словесно-логическому мышлению. Для проведения некоторых игр и упражнений можно дополнительно использовать вспомогательный материал — игрушки-персонажи, обручи, веревочки и пр. Помимо самих блоков, существуют всевозможные альбомы и пособия для всех возрастных групп. ПЕДАГОГИЧЕСКАЯ ТЕХНОЛОГИЯ РАЗВИВАЮЩИХ ИГР Б. П. НИКИТИНА Программа игровой деятельности состоит из набора развивающих игр, которые при всем своем разнообразии исходят из общей идеи и обладают характерными особенностями. Каждая игра представляет собой набор задач, которые ребенок решает с помощью кубиков, кирпичиков, квадратов из картона или пластика, деталей из конструктора-механика и т. д. В своих книгах Никитин предлагает развивающие игры с кубами, узорами, рамками и вкладышами Монтессори, уникубом, планами и картами, квадратами, наборами «Угадайка», таблицами сотни, «точечками», «часами», термометром, кирпичиками, кубиками, конструкторами. Игра Сложи узор. Игра состоит из 16 одинаковых кубиков. Все шесть граней каждого кубика окрашены в четыре цвета. Это позволяет составлять из них одно-, двух-, трех- и даже четырехцветные узоры в любом количестве вариантов. Сами узоры напоминают контуры различных предметов, картин, которым дети любят давать названия. В игре с кубиками дети выполняют три разных вида заданий. Сначала учатся по узорам-заданиям складывать точно такой же узор из кубиков. Затем ставится обратная задача: глядя на кубики, сделать рисунок узора, который они образуют. И наконец, третье — придумывать новые узоры из девяти или 16 кубиков, каких еще нет в книге, т. е. выполнять уже творческую работу. Используя разное число кубиков и разную не только по цвету, но и по форме (квадраты и треугольники) окраску кубиков, можно изменять сложность заданий в достаточно широком диапазоне. В этой игре хорошо развивается способность детей к мыслительным операциям и умению комбинировать. Самые простые узоры-задания складываются из четырех кубиков, их можно давать малышам начиная с 1—1, 5 лет. Усложнение узоров происходит постепенно, но эта постепенность, конечно, относительна, и переход от одноцветных граней к двуцветным — очередная ступень в уровне сложности. ТЕХНОЛОГИЯ ИНТЕЛЛЕКТУАЛЬНО – ТВОРЧЕСКОГО РАЗВИТИЯ «Сказочные лабиринты игры» В.В. ВОСКОБОВИЧА В основе методики В. Воскобовича лежит игра, его игры не просто кадраты, треугольники, шнурочки, а волшебные льдинки и чудо –цветики. Игра всегда познавательна: несёт новое знание, формирует навыки, тренирует память, внимательность, мелкую моторику и т.д. Принцип технологии Воскобовича: интерес-познание – творчество. Развивающие игры Воскобовича характеризуются тем, что содержат готовый игровой замысел, материал и правила. Каждую развивающую игру сопровождает увлекательная сказка, которая помогает ребёнку быстрее запомнить цифры, буквы или формы. В сюжете малыш помогает героям, выполняя различные задания и упражнения. В каждой сказочной области Фиолетового леса есть свои сказочные герои. Сказки — задания и их добрые герои- мудрый Ворон Метр, храбрый малыш ГЕО, умудрённый опытом Паук Юк, забавный Магнолик – сопровождая ребёнка в игре, учат его не только математике, чтению, логике, но и человеческим взаимоотношениям. Развивающие игры Воскобовича способствуют:
В старшей группе «Одуванчик» (воспитатель Михачик Н.В) создан интеллектуально- игровой центр «Фиолетовый лес» населённый персонажами сказок и разнообразными игровыми материалами, который всё время пополняется новыми играми. Вывод: Мы можем сделать вывод, что развивающая игра представляет собой многоплановое, сложное педагогическое явление: она является и игровым методом обучения детей дошкольного возраста, и формой обучения, самостоятельнойигровой деятельностью, и средством всестороннего воспитания личности ребёнка.
|